988 resultados para roof-harvested rainwater


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study aimed to evaluate the suitability of Escherichia coli, enterococci and C. perfringens to assess the microbiological quality of roof harvested rainwater, and to assess whether the concentrations of these faecal indicators can be used to predict the presence or absence of specific zoonotic bacterial or protozoan pathogens. From a total of 100 samples tested, respectively 58%, 83% and 46% of samples were found to be positive for E. coli, enterococci and C. perfringens spores, as determined by traditional culture based methods. Additionally, in the samples tested, 7%, 19%, 1%, 8%, 17%, and 15% were PCR positive for A. hydrophila lip, C. coli ceuE, C. jejuni mapA, L. pneumophila mip, Salmonella invA, and G. lamblia β-giardin genes. However, none of the samples was positive for E. coli O157 LPS, VT1, VT2 and C. parvum COWP genes. The presence or absence of these potential pathogens did not correlate with any of the faecal indicator bacterial concentrations as determined by a binary logistic regression model. The roof-harvested rainwater samples tested in this study appear to be of poor microbiological quality and no significant correlation was found between the concentration of faecal indicators and pathogenic microorganisms. The use of faecal indicator bacteria raises questions regarding their reliability in assessing the microbiological quality of water and particularly their poor correlation with pathogenic microorganisms. The presence of one or more zoonotic pathogens suggests that the microbiological analysis of water should be performed, and appropriate treatment measures should be undertaken especially in tanks where the water is used for drinking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 214 rainwater samples from 82 tanks were collected in urban Southeast Queensland (SEQ) in Australia and analysed for the zoonotic bacterial and protozoan pathogen using real-time binary PCR and quantitative PCR (qPCR). Quantitative Microbial Risk Assessment (QMRA) analysis was used to quantify the risk of infection associated with the exposure to potential pathogens from potable and non-potable uses of roof-harvested rainwater. Of the 214 samples tested, 10.7%, 9.8%, and 5.6%, and 0.4% samples were positive for Salmonella invA, Giardia lamblia β-giardin , Legionella pneumophila mip, and Campylobacter jejuni mapA genes. Cryptosporidium parvum could not be detected. The estimated numbers of viable Salmonella spp., G. lamblia β-giradin, and L. pneumophila genes ranged from 1.6 × 101 to 9.5 × 101 cells, 1.4 × 10-1 to 9.0 × 10-1 cysts, and 1.5 × 101 to 4.3 × 101 per 1000 ml of water, respectively. Six risk scenarios were considered from exposure to Salmonella spp., G. lamblia and L. pneumophila. For Salmonella spp., and G. lamblia, these scenarios were: (1) liquid ingestion due to drinking of rainwater on a daily basis (2) accidental liquid ingestion due to garden hosing twice a week (3) aerosol ingestion due to showering on a daily basis, and (4) aerosol ingestion due to hosing twice a week. For L. pneumophila, these scenarios were: (5) aerosol inhalation due to showering on a daily basis, and (6) aerosol inhalation due to hosing twice a week. The risk of infection from Salmonella spp., G. lamblia, and L. pneumophila associated with the use of rainwater for showering and garden hosing was calculated to be well below the threshold value of one extra infection per 10,000 persons per year in urban SEQ. However, the risk of infection from ingesting Salmonella spp. and G. lamblia via drinking exceeds this threshold value, and indicates that if undisinfected rainwater were ingested by drinking, then the gastrointestinal diseases of Salmonellosis and Giardiasis is expected to range from 5.0 × 100 to 2.8 × 101 (Salmonellosis) and 1.0 × 101 to 6.4 × 101 (Giardiasis) cases per 10,000 persons per year, respectively. Since this health risk seems higher than that expected from the reported incidences of gastroenteritis, the assumptions used to estimate these infection risks are critically examined. Nonetheless, it would seem prudent to disinfect rainwater for potable use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative Microbial Risk Assessment (QMRA) analysis was used to quantify the risk of infection associated with the exposure to pathogens from potable and non-potable uses of roof-harvested rainwater in South East Queensland (SEQ). A total of 84 rainwater samples were analysed for the presence of faecal indicators (using culture based methods) and zoonotic bacterial and protozoan pathogens using binary and quantitative PCR (qPCR). The concentrations of Salmonella invA, and Giardia lamblia β-giradin genes ranged from 65-380 genomic units/1000 mL and 9-57 genomic units/1000 mL of water, respectively. After converting gene copies to cell/cyst number, the risk of infection from G. lamblia and Salmonella spp. associated with the use of rainwater for bi-weekly garden hosing was calculated to be below the threshold value of 1 extra infection per 10,000 persons per year. However, the estimated risk of infection from drinking the rainwater daily was 44-250 (for G. lamblia) and 85-520 (for Salmonella spp.) infections per 10,000 persons per year. Since this health risk seems higher than that expected from the reported incidences of gastroenteritis, the assumptions used to estimate these infection risks are critically discussed. Nevertheless, it would seem prudent to disinfect rainwater for potable use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the outcomes of a study which focused on evaluating roof surfaces as stormwater harvesting catchments. Build-up and wash-off samples were collected from model roof surfaces. The collected build-up samples were separated into five different particle size ranges prior to the analysis of physico-chemical parameters. Study outcomes showed that roof surfaces are efficient catchment surfaces for the deposition of fine particles which travel over long distances. Roof surfaces contribute relatively high pollutant loads to the runoff and hence significantly influence the quality of the harvested rainwater. Pollutants associated with solids build-up on roof surfaces can vary with time, even with minimal changes to total solids load and particle size distribution. It is postulated that this variability is due to changes in distant atmospheric pollutant sources and wind patterns. The study highlighted the requirement for first flush devices to divert the highly polluted initial portion of roof runoff. Furthermore, it is highly recommended to not to harvest runoff from small intensity rainfall events since there is a high possibility that the runoff would contain a significant amount of pollutants even after the initial runoff fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study focused on the quality of rainwater at various land use locations and its variations on interaction with various domestic rainwater harvesting systems.Sampling sites were selected based upon the land use pattern of the locations and were classified as rural, urban, industrial and sub urban. Rainwater samples were collected from the south west monsoon of May 2007 to north east monsoon of October 2008, from four sampling sites namely Kothamangalam, Emakulam, Eloor and Kalamassery, in Ernakulam district of the State of Kerala, which characterized typical rural, urban, industrial and suburban locations respectively. Rain water samples at various stages of harvesting were also collected. The samples were analyzed according to standard procedures and their physico-chemical and microbiological parameters were determined. The variations of the chemical composition of the rainwater collected were studied using statistical methods. It was observed that 17.5%, 30%, 45.8% and 12.1% of rainwater samples collected at rural, urban, industrial and suburban locations respectively had pH less than 5.6, which is considered as the pH of cloud water at equilibrium with atmospheric CO,.Nearly 46% of the rainwater samples were in acidic range in the industrial location while it was only 17% in the rural location. Multivariate statistical analysls was done using Principal Component Analysis, and the sources that inf1uence the composition of rainwater at each locations were identified .which clearly indicated that the quality of rain water is site specific and represents the atmospheric characteristics of the free fall The quality of harvested rainwater showed significant variations at different stages of harvesting due to deposition of dust from the roof catchment surface, leaching of cement constituents etc. Except the micro biological quality, the harvested rainwater satisfied the Indian Standard guide lines for drinking water. Studies conducted on the leaching of cement constituents in water concluded that tanks made with ordinary portland cement and portland pozzolana cement could be safely used for storage of rain water.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water quality of rooftop-collected rainwater is an issue of increased interest particularly in developing countries where the collected water is used as a source of drinking water. Bacteriological and chemical parameters of 25 samples of rooftop-harvested rainwater stored in ferrocement tanks were analyzed in the study described in this article. Except for the pH and lower dissolved oxygen levels, all other physicochemical parameters were within World Health Organization guidelines. Bacteriological results revealed that the rooftop-harvested rainwater stored in tanks does not often meet the bacteriological quality standards prescribed for drinking water. Fifty percent of samples of harvested rainwater for rural and urban community use and 20% of the samples for individual household use showed the presence of E. coli. Fecal coliform/fecal streptococci ratios revealed nonhuman animal sources of fecal pollution. Risk assessment of bacterial isolates from the harvested rainwater showed high resistance to ampicillin, erythromycin, penicillin, and vancomycin. Multiple antibiotic resistance (MAR) indexing of the isolates and elucidation of the resistance patterns revealed that 73% of the isolates exhibited MAR

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil erosion is a serious environmental threat in the Mediterranean region due to torrential rainfalls, and it contributes to the degradation of agricultural land. Techniques such as rainwater harvesting may improve soil water storage and increase agricultural productivity, which could result in more effective land usage. Reservoir tillage is an effective system of harvesting rainwater, but it has not been scientifically evaluated like other tillage systems. Its suitability for the conditions in Spain has not been determined. To investigate and quantify water storage from reservoir tillage and how it could be adapted to improve infiltration of harvested rainwater, a laboratory-scale rainfall simulator was developed. Rainfall characteristics, including rainfall intensity, spatial uniformity and raindrop size, confirm that natural rainfall conditions are simulated with sufficient accuracy. The simulator was auto-controlled by a solenoid valve and three pressure nozzles were used to spray water corresponding to five rainfall intensities ranging from 36 to 112 mm h-1 for 3 to 101-year return period with uniformity coefficients between 83 and 94%. In order to assess the reservoir tillage method under surface slopes of 0, 5, and 10%, three soil scooping devices with identical volume were used to make depressions in the following forms: a) truncated square pyramid, b) triangular prism, and c) truncated cone. These depressions were compared to a control soil surface with no depression. For the loam soil used in this study, results show that reservoir tillage was able to reduce soil erosion and surface runoff and significantly increase infiltration. There was significant difference between the depressions and the control. Compared to the control, depression (a) reduced surface runoff by about 61% and the sediment yield concentration by about 79%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La escasez del agua en las regiones áridas y semiáridas se debe a la escasez de precipitaciones y la distribución desigual en toda la temporada, lo que hace de la agricultura de secano una empresa precaria. Un enfoque para mejorar y estabilizar el agua disponible para la producción de cultivos en estas regiones es el uso de tecnologías de captación de agua de lluvia in situ y su conservación. La adopción de los sistemas de conservación de la humedad del suelo in situ, tales como la labranza de conservación, es una de las estrategias para mejorar la gestión de la agricultura en zonas áridas y semiáridas. El objetivo general de esta tesis ha sido desarrollar una metodología de aplicación de labranza de depósito e investigar los efectos a corto plazo sobre las propiedades físicas del suelo de las diferentes prácticas de cultivo que incluyen labranza de depósito: (reservoir tillage, RT), la laboreo mínimo: (minimum tillage, MT), la no laboreo: (zero tillage, ZT) y laboreo convencional: (conventional tillage, CT) Así como, la retención de agua del suelo y el control de la erosión del suelo en las zonas áridas y semiáridas. Como una primera aproximación, se ha realizado una revisión profunda del estado de la técnica, después de la cual, se encontró que la labranza de depósito es un sistema eficaz de cosecha del agua de lluvia y conservación del suelo, pero que no ha sido evaluada científicamente tanto como otros sistemas de labranza. Los trabajos experimentales cubrieron tres condiciones diferentes: experimentos en laboratorio, experimentos de campo en una región árida, y experimentos de campo en una región semiárida. Para investigar y cuantificar el almacenamiento de agua a temperatura ambiente y la forma en que podría adaptarse para mejorar la infiltración del agua de lluvia recolectada y reducir la erosión del suelo, se ha desarrollado un simulador de lluvia a escala de laboratorio. Las características de las lluvias, entre ellas la intensidad de las precipitaciones, la uniformidad espacial y tamaño de la gota de lluvia, confirmaron que las condiciones naturales de precipitación son simuladas con suficiente precisión. El simulador fue controlado automáticamente mediante una válvula de solenoide y tres boquillas de presión que se usaron para rociar agua correspondiente a diferentes intensidades de lluvia. Con el fin de evaluar el método de RT bajo diferentes pendientes de superficie, se utilizaron diferentes dispositivos de pala de suelo para sacar un volumen idéntico para hacer depresiones. Estas depresiones se compararon con una superficie de suelo control sin depresión, y los resultados mostraron que la RT fue capaz de reducir la erosión del suelo y la escorrentía superficial y aumentar significativamente la infiltración. Luego, basándonos en estos resultados, y después de identificar la forma adecuada de las depresiones, se ha diseñado una herramienta combinada (sistema integrado de labranza de depósito (RT)) compuesto por un arado de una sola línea de chisel, una sola línea de grada en diente de pico, sembradora modificada, y rodillo de púas. El equipo fue construido y se utiliza para comparación con MT y CT en un ambiente árido en Egipto. El estudio se realizó para evaluar el impacto de diferentes prácticas de labranza y sus parámetros de funcionamiento a diferentes profundidades de labranza y con distintas velocidades de avance sobre las propiedades físicas del suelo, así como, la pérdida de suelo, régimen de humedad, la eficiencia de recolección de agua, y la productividad de trigo de invierno. Los resultados indicaron que la RT aumentó drásticamente la infiltración, produciendo una tasa que era 47.51% más alta que MT y 64.56% mayor que la CT. Además, los resultados mostraron que los valores más bajos de la escorrentía y pérdidas de suelos 4.91 mm y 0.65 t ha-1, respectivamente, se registraron en la RT, mientras que los valores más altos, 11.36 mm y 1.66 t ha-1, respectivamente, se produjeron en el marco del CT. Además, otros dos experimentos de campo se llevaron a cabo en ambiente semiárido en Madrid con la cebada y el maíz como los principales cultivos. También ha sido estudiado el potencial de la tecnología inalámbrica de sensores para monitorizar el potencial de agua del suelo. Para el experimento en el que se cultivaba la cebada en secano, se realizaron dos prácticas de labranza (RT y MT). Los resultados mostraron que el potencial del agua del suelo aumentó de forma constante y fue consistentemente mayor en MT. Además, con independencia de todo el período de observación, RT redujo el potencial hídrico del suelo en un 43.6, 5.7 y 82.3% respectivamente en comparación con el MT a profundidades de suelo (10, 20 y 30 cm, respectivamente). También se observaron diferencias claras en los componentes del rendimiento de los cultivos y de rendimiento entre los dos sistemas de labranza, el rendimiento de grano (hasta 14%) y la producción de biomasa (hasta 8.8%) se incrementaron en RT. En el experimento donde se cultivó el maíz en regadío, se realizaron cuatro prácticas de labranza (RT, MT, ZT y CT). Los resultados revelaron que ZT y RT tenían el potencial de agua y temperatura del suelo más bajas. En comparación con el tratamiento con CT, ZT y RT disminuyó el potencial hídrico del suelo en un 72 y 23%, respectivamente, a la profundidad del suelo de 40 cm, y provocó la disminución de la temperatura del suelo en 1.1 y un 0.8 0C respectivamente, en la profundidad del suelo de 5 cm y, por otro lado, el ZT tenía la densidad aparente del suelo y resistencia a la penetración más altas, la cual retrasó el crecimiento del maíz y disminuyó el rendimiento de grano que fue del 15.4% menor que el tratamiento con CT. RT aumenta el rendimiento de grano de maíz cerca de 12.8% en comparación con la ZT. Por otra parte, no hubo diferencias significativas entre (RT, MT y CT) sobre el rendimiento del maíz. En resumen, según los resultados de estos experimentos, se puede decir que mediante el uso de la labranza de depósito, consistente en realizar depresiones después de la siembra, las superficies internas de estas depresiones se consolidan de tal manera que el agua se mantiene para filtrarse en el suelo y por lo tanto dan tiempo para aportar humedad a la zona de enraizamiento de las plantas durante un período prolongado de tiempo. La labranza del depósito podría ser utilizada como un método alternativo en regiones áridas y semiáridas dado que retiene la humedad in situ, a través de estructuras que reducen la escorrentía y por lo tanto puede resultar en la mejora de rendimiento de los cultivos. ABSTRACT Water shortage in arid and semi-arid regions stems from low rainfall and uneven distribution throughout the season, which makes rainfed agriculture a precarious enterprise. One approach to enhance and stabilize the water available for crop production in these regions is to use in-situ rainwater harvesting and conservation technologies. Adoption of in-situ soil moisture conservation systems, such as conservation tillage, is one of the strategies for upgrading agriculture management in arid and semi-arid environments. The general aim of this thesis is to develop a methodology to apply reservoir tillage to investigate the short-term effects of different tillage practices including reservoir tillage (RT), minimum tillage (MT), zero tillage (ZT), and conventional tillage (CT) on soil physical properties, as well as, soil water retention, and soil erosion control in arid and semi-arid areas. As a first approach, a review of the state of the art has been done. We found that reservoir tillage is an effective system of harvesting rainwater and conserving soil, but it has not been scientifically evaluated like other tillage systems. Experimental works covered three different conditions: laboratory experiments, field experiments in an arid region, and field experiments in a semi-arid region. To investigate and quantify water storage from RT and how it could be adapted to improve infiltration of harvested rainwater and reduce soil erosion, a laboratory-scale rainfall simulator was developed. Rainfall characteristics, including rainfall intensity, spatial uniformity and raindrop size, confirm that natural rainfall conditions are simulated with sufficient accuracy. The simulator was auto-controlled by a solenoid valve and three pressure nozzles were used to spray water corresponding to different rainfall intensities. In order to assess the RT method under different surface slopes, different soil scooping devices with identical volume were used to create depressions. The performance of the soil with these depressions was compared to a control soil surface (with no depression). Results show that RT was able to reduce soil erosion and surface runoff and significantly increase infiltration. Then, based on these results and after selecting the proper shape of depressions, a combination implement integrated reservoir tillage system (integrated RT) comprised of a single-row chisel plow, single-row spike tooth harrow, modified seeder, and spiked roller was developed and used to compared to MT and CT in an arid environment in Egypt. The field experiments were conducted to evaluate the impact of different tillage practices and their operating parameters at different tillage depths and different forward speeds on the soil physical properties, as well as on runoff, soil losses, moisture regime, water harvesting efficiency, and winter wheat productivity. Results indicated that the integrated RT drastically increased infiltration, producing a rate that was 47.51% higher than MT and 64.56% higher than CT. In addition, results showed that the lowest values of runoff and soil losses, 4.91 mm and 0.65 t ha-1 respectively, were recorded under the integrated RT, while the highest values, 11.36 mm and 1.66 t ha -1 respectively, occurred under the CT. In addition, two field experiments were carried out in semi-arid environment in Madrid with barley and maize as the main crops. For the rainfed barley experiment, two tillage practices (RT, and MT) were performed. Results showed that soil water potential increased quite steadily and were consistently greater in MT and, irrespective of the entire observation period, RT decreased soil water potential by 43.6, 5.7, and 82.3% compared to MT at soil depths (10, 20, and 30 cm, respectively). In addition, clear differences in crop yield and yield components were observed between the two tillage systems, grain yield (up to 14%) and biomass yield (up to 8.8%) were increased by RT. For the irrigated maize experiment, four tillage practices (RT, MT, ZT, and CT) were performed. Results showed that ZT and RT had the lowest soil water potential and soil temperature. Compared to CT treatment, ZT and RT decreased soil water potential by 72 and 23% respectively, at soil depth of 40 cm, and decreased soil temperature by 1.1 and 0.8 0C respectively, at soil depth of 5 cm. Also, ZT had the highest soil bulk density and penetration resistance, which delayed the maize growth and decreased the grain yield that was 15.4% lower than CT treatment. RT increased maize grain yield about 12.8% compared to ZT. On the other hand, no significant differences among (RT, MT, and CT) on maize yield were found. In summary, according to the results from these experiments using reservoir tillage to make depressions after seeding, these depression’s internal surfaces are consolidated in such a way that the water is held to percolate into the soil and thus allowing time to offer moisture to the plant rooting zone over an extended period of time. Reservoir tillage could be used as an alternative method in arid and semi-arid regions and it retains moisture in-situ, through structures that reduce runoff and thus can result in improved crop yields.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soil erosion is a serious environmental threat in the Mediterranean region due to torrential rainfalls, and it contributes to the degradation of agricultural land. Techniques such as rainwater harvesting may improve soil water storage and increase agricultural productivity, which could result in more effective land usage. Reservoir tillage is an effective system of harvesting rainwater, but it has not been scientifically evaluated like other tillage systems. Its suitability for the conditions in Spain has not been determined. To investigate and quantify water storage from reservoir tillage and how it could be adapted to improve infiltration of harvested rainwater, a laboratory-scale rainfall simulator was developed. Rainfall characteristics, including rainfall intensity, spatial uniformity and raindrop size, confirm that natural rainfall conditions are simulated with sufficient accuracy. The simulator was auto-controlled by a solenoid valve and three pressure nozzles were used to spray water corresponding to five rainfall intensities ranging from 36 to 112 mm h− 1 for 3 to 101-year return period with uniformity coefficients between 83 and 94%. In order to assess the reservoir tillage method under surface slopes of 0, 5, and 10%, three soil scooping devices with identical volume were used to make depressions in the following forms: a) truncated square pyramid, b) triangular prism, and c) truncated cone. These depressions were compared to a control soil surface with no depression. For the loam soil used in this study, results show that reservoir tillage was able to reduce soil erosion and surface runoff and significantly increase infiltration. There was significant difference between the depressions and the control. Compared to the control, depression (a) reduced surface runoff by about 61% and the sediment yield concentration by about 79%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arsenic (As) contamination of communal tubewells in Prey Vêng, Cambodia, has been observed since 2000. Many of these wells exceed the WHO As in drinking water standard of 10 µg/L by a factor of 100. The aim of this study was to assess how cooking water source impacts dietary As intake in a rural community in Prey Vêng. This aim was fulfilled by (1) using geostatistical analysis techniques to examine the extent of As contaminated groundwater in Prey Vêng and identify a suitable study site, (2) conducting an on-site study in two villages to measure As content in cooked rice prepared with water collected from tubewells and locally harvested rainwater, and (3) determining the dietary intake of As from consuming this rice. Geostatistical analysis indicated that high risk tubewells (>50 µg As/L) are concentrated along the Mekong River's east bank. Participants using high risk tubewells are consuming up to 24 times more inorganic As daily than recommended by the previous FAO/WHO provisional tolerable daily intake value (2.1 µg/kgBW/day). However, As content in rice cooked in rainwater was significantly reduced, therefore, it is considered to be a safer and more sustainable option for this region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente trabalho teve como objetivo estudar a qualidade e a variabilidade de águas pluviais escoadas e armazenadas. Foram realizadas análises estatísticas descritivas, correlacionais e de componentes principais. As coletas de águas pluviais foram feitas nas dependências da Universidade Estadual Paulista Júlio de Mesquita Filho, situada no campus de Rio Claro. Para este estudo, foram utilizadas amostras de 43 precipitações, coletadas entre março de 2010 e abril de 2012. Os resultados apontam que a concepção de sistemas de tratamento de águas pluviais deve ser realizada considerando a grande variabilidade de qualidade entre eventos de chuva. Os resultados da análise de componentes principais indicam que a grande variabilidade das águas pluviais coletadas é influenciada, sobretudo, pela deposição de sólidos durante o período de estiagem e pela decomposição de matéria orgânica, requerendo tecnologias de operação flexíveis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pollutants originating with roof runoff can have a significant impact to urban stormwater quality. This signifies the importance of understanding pollutant processes on roof surfaces. Additionally, knowledge of pollutant processes on roof surfaces is important as roofs are used as the primary catchment surface for domestic rainwater harvesting. In recent years, rainwater harvesting has become one of the primary sustainable water management techniques to counteract the growing demand for potable water. Similar to all impervious services, pollutants associated with roof runoff undergo two primary processes: build-up and wash-off. The knowledge relating to these processes is limited. This paper presents outcomes of an in-depth research study into pollutant build-up and wash-off for roof surfaces. The knowledge will be important in order to develop appropriate strategies to safeguard rainwater users from possible health risks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High tunnels are simple, plastic-covered, passive solar-heated structures in which crops are grown in the ground. They are used by fruit and vegetable growers to extend the growing season and intensify production in cold climates. The covered growing area creates a desert-like environment requiring carefully monitored irrigation practices. In contrast, the exterior expanse of a high tunnel generates a large volume of water with every measurable rainfall. Each 1,000 ft of high tunnel roof will generate approximately 300 gallons from a half inch of rain. Unless the high tunnel site is elevated from the surrounding area or drainage tiles installed, or other drainage accommodations are made around the perimeter, the soil along the inside edge of the high tunnel is nearly continuously saturated. High volumes of water can also create an erosion problem. The objective of this project was to design and construct a system that enables growers using high tunnels in their production operation to reduce drainage problems, erosion, and crop loss due to excess moisture in and around their high tunnel(s) without permanent environmental and soil mediations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many areas of northern India, salinity renders groundwater unsuitable for drinking and even for irrigation. Though membrane treatment can be used to remove the salt, there are some drawbacks to this approach e.g. (1) depletion of the groundwater due to over-abstraction, (2) saline contamination of surface water and soil caused by concentrate disposal and (3) high electricity usage. To address these issues, a system is proposed in which a photovoltaic-powered reverse osmosis (RO) system is used to irrigate a greenhouse (GH) in a stand-alone arrangement. The concentrate from the RO is supplied to an evaporative cooling system, thus reducing the volume of the concentrate so that finally it can be evaporated in a pond to solid for safe disposal. Based on typical meteorological data for Delhi, calculations based on mass and energy balance are presented to assess the sizing and cost of the system. It is shown that solar radiation, freshwater output and evapotranspiration demand are readily matched due to the approximately linear relation among these variables. The demand for concentrate varies independently, however, thus favouring the use of a variable recovery arrangement. Though enough water may be harvested from the GH roof to provide year-round irrigation, this would require considerable storage. Some practical options for storage tanks are discussed. An alternative use of rainwater is in misting to reduce peak temperatures in the summer. An example optimised design provides internal temperatures below 30EC (monthly average daily maxima) for 8 months of the year and costs about €36,000 for the whole system with GH floor area of 1000 m2 . Further work is needed to assess technical risks relating to scale-deposition in the membrane and evaporative pads, and to develop a business model that will allow such a project to succeed in the Indian rural context.